

genoQs Machines

Development
Environment Setup
Setting up a development environment for genoQs Nemo and Octopus

Gabriel Seher, Wilson Stockman
2-17-2024

©2024 genoQs Machines Page | 1

Contents
Hardware overview ... 2

Overview of the development environment ... 3

1. Installing the base operating system ... 4

Download the OS image .. 4

Create a VM and install the OS ... 4

2. Installing make and 32-bit support .. 5

Installing make ... 5

Installing 32-bit libraries .. 5

3. Installing eCos and the cross-development toolchain ... 6

eCos installation ... 6

4. Downloading the genoQs source code .. 9

Download a snapshot from the genoQs site Error! Bookmark not defined.

Download from and collaborate on Github Error! Bookmark not defined.

5. Downloading the eCos runtime ... 11

Download .. 11

Verification .. 12

6. Installing and configuring VSCode ... 13

Installation .. 13

Setting up the Build configuration ... 14

Completing the install .. 15

7. Setting up the on-chip debugger .. 16

The JTAG dongle ... 16

Installing OpenOCD ... 17

Connecting the hardware via the JTAG adapter .. 17

Running a debugging session from the Terminal .. 18

Integrate VSCode and GDB/OCD .. 20

Appendix A: Building the eCos runtime library ... 22

Document version history ... 24

©2024 genoQs Machines Page | 2

Hardware overview

This document describes the installation and configuration of a development environment for the
genoQs Nemo MIDI sequencer. The described procedure is easily transferrable to Octopus as well,
since Octopus and Nemo share the same computing hardware.

Before proceeding with the development environment setup, it may be worth reviewing a few key bits of
information about the hardware that we are developing for.

The genoQs heart-board (the red printed circuit board inside the machine – Nemo and Octopus equally)
is an in-house development. The design is based on the ARM Evaluator 7T board and as such features
many traits of that board.

Below is an overview of the relevant components. Further details can be found in the respective
manufacturer data sheets which are still available on the internet.

Component Model Board Features

CPU Samsung KS32C50100 /
Samsung S3C4510

Note: In the early 2000’s
Samsung renamed /
renumbered their ARM
Processor models. Both these
model numbers refer to the
same device.

- 16/32-bit RISC architecture

- ARM7TDMI core

- JTAG-based debug solution

- Two UARTs

- 18 programmable I/O ports

- 21 interrupt sources, including 4 external

- 10MHz clock (the processor uses this to
generate a 50MHz clock)

SRAM Samsung K6R4016V1D - 2 MB RAM

Flash Storage AMD Am29LV400 - 4 MB Flash

©2024 genoQs Machines Page | 3

Overview of the development environment

The development environment for the genoQs Nemo consists of the following building blocks:

1) Base operating system: the base OS for the host development machine, here Ubuntu Linux
22.04.3 LTS running in a VM. Source: ubuntu.org.

2) Make and 32-bit support: components that need to be installed on a basic 64-bit Ubuntu to
run the build process of our source code. 32-bit support is required by the applications in
the cross-toolchain and 'make' is required to execute the build process per se.

3) eCos and the arm-eabi cross-development toolchain: this is used to compile and inspect
(as in debug) the code on the host machine (our Ubuntu VM) in such a way that it runs on the
target machine (the genoQs heart board). Source: eCos Sourceware.

4) genoQs source code: the source code of the Nemo and Octopus Firmware provided in the
version of the latest public release. Source: www.genoqs.net

5) Customized eCos runtime: this is the eCos OS library tailored and compiled specifically
for the genoQs heart board. It provides key operating system functionality used by the
genoQs source code (e.g. threads, mailboxes, semaphores, etc.) that make up the real-time
OS character of the genoQs firmware. Source: www.genoqs.net

6) VSCode: we use VSCode as an integrated development environment (IDE). At the time of
writing free and based on open source. Source: Ubuntu software repositories.

7) OpenOCD: used as an on-chip debugging server. This block is technically optional but by all
means it is the most essential piece for any meaningful development effort. Here we use
OpenOCD as a software (free and open source, from openocd.org) in tandem with the
Olimex ARM-USB-TINY dongle (which needs to be purchased separately).

The next sections of the document will describe each building block in detail.

file:///C:/Users/gabri/Documents/genoqs-dev-vm%20Doc/www.genoqs.net
file:///C:/Users/gabri/Documents/genoqs-dev-vm%20Doc/www.genoqs.net

©2024 genoQs Machines Page | 4

1. Installing the base operating system

Download the OS image

For this environment we chose a free and easy to install Linux distribution: Ubuntu. The environment
described here will be installed into a VM in VMWare on Windows 11. Note: it may also be possible to
install a similar environment on hardware or on an Intel-Mac under Parallels.

We need to download the OS installation image file from Ubuntu:

http://www.ubuntu.com/

Select the options for Ubuntu 22.04 LTS Desktop (or latest LTS version) and download the image file.
When the download completes you should have a file with a name like
“ubuntu-22.04.3-desktop-amd64.iso” or similar, according to the version of your Ubuntu.

Create a VM and install the OS

Create a VM following the relevant VMWare documentation and install Ubuntu from the downloaded
image. You may choose any username you like, for the creation of this document we used ‘genoqs’.

The minimal configuration offered by the Ubuntu installer is sufficient for our purposes. After the
installation is complete, the machine will be rebooted.

Once the machine has rebooted, log in as the user you created during installation. Make sure that the
fresh VM has access to the internet as we will require several items to be downloaded.

Should there be any issue with internet access, make sure you have the right entries for nameservers.
Check the /etc/resolv.conf file:

$ sudo nano /etc/resolv.conf

Next, add Google’s public DNS servers to the file, with the nameserver keyword followed by the IP
address of the DNS server, as follows:

nameserver 8.8.8.8

nameserver 8.8.4.4

Let’s make sure to start with a fresh system. Now run:

sudo apt update && apt upgrade

Confirm any prompts asking for permission to continue.

http://www.ubuntu.com/

©2024 genoQs Machines Page | 5

2. Installing make and 32-bit support

Open a terminal window.

Installing make

We need make to be installed on our system. If it is not, you will not be able to run the makefile
controlling the build process. To install make, issue the following command:

sudo apt install make

Installing 32-bit libraries

Our cross-toolchain (arm-eabi) consists of a set of 32-bit applications, while the standard architecture
of our platform is 64-bit (at the time of writing). To run our 32-bit executables on a 64-bit Ubuntu system,
we have to add the i386 architecture and then install several library packages.

Issue the commands below to install the 32-bit libraries that are required:

sudo dpkg --add-architecture i386

sudo apt-get update

sudo apt-get install libncurses5:i386 libstdc++5:i386 libstdc++6:i386

libc6:i386 zlib1g:i386

If you are prompted to confirm the installation, please do so.

©2024 genoQs Machines Page | 6

3. Installing eCos and the cross-development toolchain

eCos installation

We will install the eCos environment into a new directory, in this case /opt/ecos. This directory needs
to be created first and given proper permissions before we can proceed with downloading eCos.

Enter the commands below in the terminal window. You may be asked for your password, which allows
you to run certain commands as an admin user. Use the password of your login user.

$ cd /opt

$ sudo mkdir ecos

$ sudo chmod 777 ecos

$ cd ecos

The eCos installation is done with the help of an installation utility, which we download with the
following command:

$ sudo wget --passive-ftp

ftp://ecos.sourceware.org/pub/ecos/ecos-install.tcl

ftp://ecos.sourceware.org/pub/ecos/ecos-install.tcl

©2024 genoQs Machines Page | 7

Once the installation utility is downloaded, execute it issuing the following command:

$ sudo sh ecos-install.tcl

You should see the ecos Installer start.

Select a download site and then accept the default download location (which should be /opt/ecos/).

Choose to install the “arm-eabi” toolchain, and then select q to finish the selection. Your screen
should look like below:

©2024 genoQs Machines Page | 8

Once you press Return the files should download and install automatically.

The installation of eCos should conclude with the message “Installation complete!”.

IMPORTANT: to have the eCos environment working properly we now need to set the PATH correctly.
Once ecos installation is complete, invoke from the ecos install directory (/opt/ecos/):

$ source ./ecosenv.sh

©2024 genoQs Machines Page | 9

4. Downloading the genoQs source code

The source code files of the genoQs machines are available from the genoQs Github page. Using Github
as the main code repository ensures that the developer has a direct latest copy of the code and is ready
to work/collaborate (pushing code, branching etc.).

https://github.com/genoqs-community/source

You can download(clone) the code publicly, however if you would like remote write permissions please
get in touch or raise a pull request.

Install the git client tool
$ sudo apt-get install git

©2024 genoQs Machines Page | 10

Create a working directory ~/Dev and clone the latest code into it:

$ mkdir ~/Dev

$ cd ~/Dev

$ git clone https://github.com/genoqs-community/source.git

~Dev/genoqs-sources

3. Optional - only needed for remote pushing etc.: setup a Github user at www.github.com.

If you would like to push your changes of the code into the master branch get in touch with the
repository owners via Github.

https://github.com/genoqs-community/source.git
http://www.github.com/

©2024 genoQs Machines Page | 11

5. Downloading the eCos runtime

The eCos runtime library is required for the compilation of the source code we downloaded in step 4.
The runtime library customized for our hardware can be downloaded from the genoQs site. The provided
library is configured to support the genoQs heart board (which Nemo and Octopus share) and compiled
with the toolchain provided with ecos-3.0, which we have installed in step 3.

Note: building the eCos library with another (newer) toolchain may be possible and feasible. This may
be required at some point in the future where incompatibilities between the toolchain and the used IDE
may appear. Instructions on how to build the eCos runtime library are provided as an appendix.

Download

Now we need to download the runtime library and eCos base files supplied by genoQs. Issue the
following commands to download the required files to the /opt directory:

$ cd /opt

$ sudo wget https://genoqs.net/files/genoqs-ecos-runtime.zip

Unzip the file and then change ownership of the files to your login user (here assuming it is genoqs) by
issuing the following command:

$ sudo unzip -q *.zip

$ sudo chown -hR genoqs genoqs-ecos-runtime

Your screen may look similar to the below:

https://genoqs.net/files/genoqs-ecos-runtime.zip

©2024 genoQs Machines Page | 12

Verification

At this point we should be able to compile the code. Let’s verify it:

$ cd ~/Dev/genoqs-sources/NEMO_OS/

$ make

This should produce a screen like the below. Note that some warnings are manually triggered and may
appear, but they do not prevent the code from compiling. Once the build process is complete you
should see the output file located in the directory; this is your newly compiled OS!

In the example above the output file is nemo.elf_DEBUG_DONT_DEPLOY.

Note: this particular file is created for development purposes and contains debugging symbol tables. It
can be run in the development environment but should under no circumstances be flashed to Nemo!
Please see the makefile for details.

©2024 genoQs Machines Page | 13

6. Installing and configuring VSCode

Installation

The easiest way to install VSCode as our IDE (integrated development environment) is from the Ubuntu
Software Manager. Open the Software Manager and in the search bar (you may need to click the top left
icon) type 'vscode'.

Click on 'code' and then on the green 'Install' button. Once the installation is complete, open a new
Terminal window and start VSCode by simply typing in:

$ code

Along with the startup window you should see the VSCode icon in the Dock. We recommend making it
stick to the Dock (Right-Click on the icon -> Add to Favorites).

©2024 genoQs Machines Page | 14

Setting up the Build configuration

In a first step we will link the IDE graphical user interface (GUI) to the build environment. The objective
here is to have a nice view of the source code via the IDE editor and at the same time be able to build
the executable from the GUI elements of the IDE.

In a first step we need to link our source code to a VSCode project. For this, on the appearing VSCode
Welcome page, select 'Open Folder'. In the appearing window select Dev/genoqs-sources -> Open.
You may get another prompt asking if you trust the authors of this folder, you can confirm: Trust folder
and enable all features. Your screen may look like the below:

Install the Makefile Tools extension: since our code uses make and a makefile for compilation but
VSCode does not support makefiles from the get-go, we need to install the Microsoft-provided
extension to enable VSCode to work with makefiles. For this, do the following:

Click on the Extensions icon in the VSCode window (the one with the square building blocks)

In the search field type 'make'.

Under the search results you should see one named 'Makefile Tools' provided by Microsoft.

©2024 genoQs Machines Page | 15

Click on Install.

Once you do so, you should see a screen similar to the below.

Now we need to configure Makefile Tools for our environment. Here we will configure it to build the
Nemo firmware.

With the extension 'Makefiles Tools' installed we now have an icon for it in the dock of VSCode. Click on
the extension icon which will bring up a few setting options. Make sure that two values are set: the Make
executable to ‘make’ (resolving to /usr/bin/make) and the Makefile location to NEMO_OS (resolving to
home/genoqs/Dev/genoqs-sources/NEMO_OS/makefile).

Invoking Build from the tool menu of the Makefile Tools extension should now trigger the build process
just like we have done it by invoking make on the command line in step 5.

Completing the install

To complete the base setup of VSCode we need to install the C/C++ extension, as well as the C/C++
extension pack. These provide both some comfortable IDE features (Intellisense etc.) as well as some
key functionality needed later to set up the debugging environment in VSCode. The installation can be
done in a very similar fashion to that of the Makefile Tools.

©2024 genoQs Machines Page | 16

7. Setting up the on-chip debugger

We will use OpenOCD as a debugging server, which in our setup will run on our Ubuntu VM and
translate commands issued by arm-eabi-gdb (our debugger) to something that the genoQs heart board
understands, and vice versa.

The JTAG dongle

Communication between OpenOCD and the heart board takes place with the help of a JTAG dongle. The
dongle that our setup is based on and proved to be working (with the provided configuration file in the
source package) is the Olimex ARM-USB-TINY.

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY/

Note that other JTAG dongles may work, however, we have found that even very subtle differences in the
hardware could prevent the debugging environment from working properly. For example, the Olimex
ARM-USB-TINY works, however, its improved, more performant, and highly praised sibling, the Olimex
ARM-USB-TINY-H did not work properly in our case. Therefore, if you plan to purchase an Olimex
ARM-USB-TINY dongle, make sure to precisely get that ‘plain’ version (and not the -H version).

For the installation and setup of communication with your computer you will likely need to install FTDI
drivers, according to the Olimex specification. Details about this can be found on the product page for
the dongle (link above) or on ftdichip.com.

©2024 genoQs Machines Page | 17

Installing OpenOCD

To install OpenOCD we follow the instructions provided at openocd.org. In our case this means issuing
the following command:

$ sudo apt-get install openocd

Once installed, OpenOCD can be started from the command line by simply invoking ‘openocd’. You
may try it although no, we are not ready for prime time yet; but invoking the command confirms whether
the installation was successful or not. If the installation was successful you should see an output from
OpenOCD stating that it can’t find the openocd.cfg file. With the installation confirmed, we need to
provide OpenOCD with the right configuration for our environment.

On the one hand it needs to know which adapter we are using and on the other, which CPU target it is
talking to. Both pieces of information are captured in the configuration file nemo_jtag-openocd.cfg
which is found in our source code folder NEMO_OS, which we get to in a minute.

8. Connecting the hardware via JTAG

We now turn to the hardware side of the setup. Make sure the genoQs machine (Nemo in this case) is
turned off and disconnected from the power source.

Now open the enclosure and gain access to the heart board (the red PCB). The heart board features a
JTAG connector. Attach the flat cable that comes with the Olimex adapter to this connector. There
should be only one possible way to attach it due to the shape of the connector.

Once the Olimex adapter cable is connected to the heart board you may reconnect the power source
and turn on the machine.

Back on the software side, and with OpenOCD installed, connect the Olimex ARM-USB-TINY adapter
to a USB port on the computer that is hosting our VM and make sure that the respective USB device (the
Olimex adapter) is also logically connected to your VM (and not the host).

©2024 genoQs Machines Page | 18

Running a debugging session from the Terminal

1. Start an OpenOCD session: in a terminal window (which we shall call Console1) we will start the
OpenOCD server and pass it a few commands that get the heart board ready with a loaded image at
start address 0x0, resumed, halted and ready for gdb connection. Issue the command:

$ openocd -f ~/Dev/genoqs-sources/NEMO_OS/nemo_jtag-openocd.cfg -c

"init" -c "halt" -c "load_image

/home/genoqs/Dev/genoqs-sources/NEMO_OS/nemo.elf_DEBUG_DONT_DEPLOY 0x0" -c

"resume 0x10040" -c "halt"

This command should produce an output similar to:

2. Load arm-eabi-gdb: open an additional Terminal window (which we shall call Console2) and issue
the following command:

$ /opt/ecos/gnutools/arm-eabi/bin/arm-eabi-gdb

~/Dev/genoqs-sources/NEMO_OS/nemo.elf_DEBUG_DONT_DEPLOY

The last line of the output from gdb should read: "Reading symbols from
/home/genoqs/Dev/genoqs-sources/NEMO_OS/nemo.elf_DEBUG_DONT_DEPLOY...done."

©2024 genoQs Machines Page | 19

3. Connect to openOCD and set breakpoints: while still in Console2 we issue the following
commands in sequence on the gdb command line. Important to add the first break in cyg_user_start
before adding the break NEMO_key__master.h:80 - otherwise we see an error.

$ target extended-remote localhost:3333

$ break cyg_user_start

$ continue

$ break NEMO_key__master.h:80

$ continue

After the last continue command we should see the Nemo blink as usual, and running the freshly
uploaded firmware. However, there is a breakpoint set at a place in the code, where key presses are
interpreted. This means, once we hit a key, we should see it break the execution.

4. Start debugging: now hit any button on Nemo. The debugger should catch that button press and
break accordingly. You may now use the gdb console interface to inspect registers, variables, etc.

At this point we are certain that the connection between the genoQs machine and our environment is
working and that we have a working on-chip debugging environment!

The last step in our setup is to integrate the debugging environment and VSCode.

©2024 genoQs Machines Page | 20

Integrate VSCode and GDB/OCD

Start VSCode and go to the Extensions panel. If not already installed (last part of Step 6) it is now time to
install the extension C/C++. This extension includes the debugger adapter plugin vppdbg which we
require, and which supports configurations of OpenOCD etc.

Go to the Run and Debug panel.

Click on the 'create a launch.json file' highlighted text.

Then in the appearing menu select C/C++: (gdb) Attach (the first option from the top). This will create
and present us a generic launch.json file in the editor.

The launch.json file stores configurations to be used and invoked by the Run and Debug functionality.
Therefore, we need to adjust the launch.json file according to our needs.

The launch.json file resides in an invisible folder, in our case at the following location:
genoqs-sources/.vscode

©2024 genoQs Machines Page | 21

We will replace the freshly created generic launch.json file with one that is already prepared for our
environment. We can obtain it from the genoqs site and put it into the right location with the following
command sequence:

cd ~/Downloads

sudo wget https://genoqs.net/files/launch.json

cp launch.json ~/Dev/genoqs-sources/.vscode

Go now to the Run and Debug panel again - there should be a configuration called NEMO OpenOCD (in
the top menu).

Select it.

Now press the green triangle button ('Play' or 'Run'..). This should start the make process followed by
the upload to our machine.

Congratulations! From here you should be able to use the debugging facilities provided by VSCode.

https://genoqs.net/files/launch.json

©2024 genoQs Machines Page | 22

Appendix A: Building the eCos runtime library

The procedure to build eCos is described on the ecos page here:
https://ecos.sourceware.org/docs-3.0/user-guide/using-ecosconfig-on-linux.html. Even at the risk of
duplication, below are the steps to configure and build the ecos runtime from our downloaded sources.

The eCos runtime library can be compiled with the eCos configuration (ecosconfig) tool included in the
ecos installation that we have downloaded. To compile eCos from source for our purposes we must
achieve two milestones:

1) Build the eCos tree as specified in the configuration file for our specific hardware (file
available on the genoqs site) and

2) Inject the memory layout files specific for the genoQs heart board (files available on the
genoqs site) into the build tree before we compile it.

Here are the steps to be carried out. It is essential that all steps are carried out exactly and in sequence.

1. Set the environment variables using the utility provided by ecos:

Set the environment variables for ecos commands to work

$ cd /opt/ecos

$ source ./ecosenv.sh

2. Prepare the work directory, where we will build the ecos runtime

 # Build our workspace where we will compile our stuff

$ sudo mkdir /opt/ecos-work

 # Make sure that the directory can be used to build the ecos tree inside

$ sudo chmod 777 /opt/ecos-work

$ cd /opt/ecos-work

3. Create the ecos build tree needed for our hardware:

Get the ecos configuration file from the genoqs site.

$ sudo wget https://genoqs.net/files/genoqs-ecos-config.ecc

 # Set the file ownership to prevent permission issues with ecosconfig.

https://ecos.sourceware.org/docs-3.0/user-guide/using-ecosconfig-on-linux.html
https://genoqs.net/files/genoqs-ecos-config.ecc

©2024 genoQs Machines Page | 23

$ sudo chown -hR genoqs genoqs-ecos-config.ecc

Check the configuration. Final output line should be 'No conflicts'.

$ ecosconfig --config=genoqs-ecos-config.ecc check

 # Create the build tree for the genoqs heart board as target.

$ ecosconfig --config=genoqs-ecos-config.ecc tree

4. Inject the memory configuration files into the ecos build tree before compiling it:

 # Move to the Downloads directory

$ cd ~/Downloads

 # Download the genoqs heartboard memconfig package

$ sudo wget https://genoqs.net/files/genoqs-heartboard-memconfig.zip

Inject the heartboard memconfig files into the build tree.

$ unzip genoqs-heartboard-memconfig.zip -d

/opt/ecos-work/install/include/pkgconf

5. Build eCos:

 # Builds the ecos environment. The final output line should read 'build finished'.

$ cd /opt/ecos-work

$ make

6. Closing remarks:

The directory /opt/ecos-work/install/ contains the runtime packages needed to compile the code.

 /opt/ecos-work/install needs to be used as PREFIX in our makefile.

 /opt/ecos-work/install/include needs to be used as INCLUDE_PATH in our makefile.

https://genoqs.net/files/genoqs-heartboard-memconfig.zip

©2024 genoQs Machines Page | 24

Document version history

Version Date Author Scope and changes

1 2007 John Kimble Set up an environment based on Ubuntu 7 and
Eclipse 3 up to the point of ‘make’.

Does not include on-chip debugging.

2 2024.02.21 Gabriel Seher,
Wilson Stockman

Instructions to set up an environment based on
Ubuntu 22 and VSCode to the point of ‘make’ from
within VSCode.

Instructions to set up for on-chip debugging via
OpenOCD and arm-eabi-gdb from within VSCode.

Instructions on how to compile the eCos library from
scratch.

